RSS

Let’s dig into an issue of the FT232 chip

The FTDI FT232-family of chips are used everywhere. They offers a very compact way to interface an UART to an USB. As soon the USB devices started booming, the “huge” serial connectors began to disappear from our PC. However, many of us still needed a real-serial port, and FTDI had the genial idea to create a small chip to provide the conversion.

Our primary usage is RS485 to USB conversion, and we designed from scratch our adapter from the beginning. However, since we needed some extra features on the adapter itself, we added a small MCU together with the FT232 chip. Let’s say the “dirty work” of cleaning the noise incoming from the RS485 line was made by the MCU, then its result is sent through the FTDI chip to the PC, via USB. Our systems are typically placed in very noisy environment, long cabling, poor grounding and so away. For this reason, even dealing with a lot of noise, we had never particular problems with such a structure.
No problems so far…until the past week!

The problem.

Consider any protocol you like over a UART: it’s typically structured as a BOM (begin-of-message) and some kind of EOM (end-of-message).
Let’s take it easy, considering that there’s no noise in the message itself, but immediately before or after. That’s not an abuse, because the RS485 line is placed in a low-impedance state only during the byte transfer. When released it’s in a high-impedance state, and a lot of noise is appearing on the line.
So, what do you expect from a false byte (due to the noise) immediately after the useful message? I’d expect an error after, and maybe some random bytes after the data. By the way, since we’re using a well-defined BOM+EOM, we’re able to detect the start and the end of the message, then cut off any false byte before and after.
Our surprise was seeing the false bytes…in the middle!

For make you understand better the case, I take my old Arduino 2009 and simply plug it to my pc. It’s a original Arduino, without any hack, and the scope probes are just for inspecting what happens.

Image00001

The Arduino is running this very minimal sketch. It’s just sending a string of bytes, continuously, interleaving a short delay.
If you notice, the “noise” is intentionally placed right after the end of the stream, as a byte sent with the wrong parity. The expectation is receiving a “frame error”, but maybe the correct value.

/*
* test_uart.ino
*
* Created: 9/24/2014 5:43:55 AM
* Author: Mario
*/

#define PARITY true

void setup()
{
    pinMode(2, OUTPUT);
}

void loop()
{
    digitalWrite(2, true);
  
    Serial.begin(38400, SERIAL_8E1);
    delay(10);

    for (byte i = 0; i < 0x60; i++){
        Serial.write(i);
    }
    Serial.flush();
    delayMicroseconds(500);
    
#if PARITY
    Serial.begin(38400, SERIAL_8O1);
    Serial.write(0x12);
    Serial.flush();
#endif
    
    digitalWrite(2, false);
    delay(200);
}

Now, here is the counterpart running on the PC, which receives the data and logs them on a file (or on the console).

    class Program
    {
        const string FileName = @"C:\Temp\arduino_dump.txt";

        static void Main(string[] args)
        {
                bool exit = false;
                byte[] buffer = new byte[1024];

                using (var port = new SerialPort("COM3", 38400, Parity.Even, 8, StopBits.One))
                {
                    //port.ParityReplace = 0;
                    port.Open();
                    port.ErrorReceived += port_ErrorReceived;

                    while (exit == false)
                    {
                        int count = port.BytesToRead;
                        if (count > 0)
                        {
                            port.Read(buffer, 0, count);

                            var sb = new StringBuilder();
                            for (int i = 0; i < count; i++)
                            {
                                //if (buffer[i] == 0) Console.WriteLine();
                                //Console.Write("{0:X2} ", buffer[i]);
                                if (buffer[i] == 0) sb.AppendLine();
                                sb.AppendFormat("{0:X2} ", buffer[i]);
                            }

                            File.AppendAllText(FileName, sb.ToString());
                        }

                        if (Console.KeyAvailable)
                        {
                            exit = true;
                        }
                        else
                        {
                            Thread.Sleep(1);
                        }
                    }

                }
        }

        static void port_ErrorReceived(object sender, SerialErrorReceivedEventArgs e)
        {
            Console.WriteLine(e.EventType);
        }
    }

Image00002

console

When the programs run, the log collects the received data and it’s pretty clear where the problem is.


00 01 02 03 04 05 06 ... 4A 4B 4C 4D 4E 3F 3F 4F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 12
00 01 02 03 04 05 06 ... 4A 4B 4C 4D 4E 4F 50 3F 3F 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 12
00 01 02 03 04 05 06 ... 4A 4B 4C 4D 4E 4F 3F 3F 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 12
00 01 02 03 04 05 06 ... 4A 4B 4C 4D 4E 4F 50 51 3F 3F 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 12

Note: the strings have been shorted for clarity.

As expected, the extra byte appears always at the end of each string: simply the FT232’s UART accepts the 8-bits value as-is, despite the wrong parity.
However, the real problem is before the extra byte: there is a strange 3F-pair in the message. Why? Who adds it?

Let’s dig into..

First off, the MSDN docs about the SerialPort state that the 3F is added by the framework, upon the ParityReplace property. That is, when this property is set to zero (disable parity replacing), the 3F-pair disappear. Yes, but I wouldn’t lose that info, and…why the parity error is revealed a bunch of bytes before the actual wrong byte?

My colleague made several tests:

  • a serial stream using the “old” RS232;
  • a serial stream using a commercial RS232-to-USB NOT-using a FTDI chip;
  • a serial stream using a commercial RS232-to-USB using a FTDI chip.

It was pretty easy to understand that the odd-placement of the 3F-pair was observed only in the FTDI case.

As he was performing the tests, I decided to make my own with the Arduino, which is shown above. However, I wanted to understand why, so I moved to some research.
FTDI does not offer any specs about the FT232 USB protocol. However, there’s always an angel in the sky, and this angel actually wrote a small C-library which claims to interface Windows/Linux without any problem to the FT232-family chips.
Browsing the driver sources, I bumped against the status poll, which also transfers the data from the chip to the pc.
Here is some remark found in the sources:

/**
    Poll modem status information

    This function allows the retrieve the two status bytes of the device.
    The device sends these bytes also as a header for each read access
    where they are discarded by ftdi_read_data(). The chip generates
    the two stripped status bytes in the absence of data every 40 ms.

    Layout of the first byte:
    - B0..B3 - must be 0
    - B4       Clear to send (CTS)
                 0 = inactive
                 1 = active
    - B5       Data set ready (DTS)
                 0 = inactive
                 1 = active
    - B6       Ring indicator (RI)
                 0 = inactive
                 1 = active
    - B7       Receive line signal detect (RLSD)
                 0 = inactive
                 1 = active

    Layout of the second byte:
    - B0       Data ready (DR)
    - B1       Overrun error (OE)
    - B2       Parity error (PE)
    - B3       Framing error (FE)
    - B4       Break interrupt (BI)
    - B5       Transmitter holding register (THRE)
    - B6       Transmitter empty (TEMT)
    - B7       Error in RCVR FIFO

So, something gets clearer:

  • The UART error are summarized as-per-chunck of data, not just for each byte;
  • the incoming data should face a bit-2 equals to ONE because the forced parity error.

I am FAR to be an expert of USB protocols, and of course you would have many USB devices exchanging data. Listening to what’s up in the circus may be a challenge.
The first thing to do is inspecting the Windows registry for the VID/PID codes of the FDTI chip. Here is how to do:

registry

To inspect the USB data, the simplest things to do is downloading the really awesome tool provided by Microsoft: Messaging Analyzer. It does almost everything (excluding coffee), and it’s also free.

ms-message-analyzer

In order to limit the number of the message displayed, but let’s apply a simple (even dumb) filter to the grid. The results are as follows.
This first picture shows the last chunk of the string when there’s NO the extra byte. You may notice that the status byte has the bit-2 off.

capture-ok

The second snapshot shows the altered transfer, instead. The status byte has now the bit-2 on.

capture-err

Conclusions.

The reason behind the odd-placement is now clear: a design-decision of the FTDI engineers. However, seems that there’s no way to overcome this problem. The only thing you can do is disabling the ParityReplace in the SerialPort, and forget any UART error. This imply you strictly rely the reliability of the message on the protocol itself, because the physical layer won’t help you much.

 
Leave a comment

Posted by on September 27, 2014 in .Net, CodeProject, Electronics, Software

 

Tags: , , , , ,

A WPF StackPanel-surrogate with shared-sizing scope ability

Here is a simple trick for simulating the shared-sizing feature of the WPF Grid even in a StackPanel fashion.

demo

Basically, you can have several panels, each one in a separate visual fragment, and “synchronize” their children height (or width, when horizontally-oriented).
A short video explains better than thousands of words.

The solution is pretty simple. Since the Grid already offers such a feature, the trick is leveraging it instead a “real” StackPanel. Otherwise, the mechanism for managing the shared-size scopes is rather complex. As for “complex” I mean that you should keep all the scrolling and virtualization features which is part of a StackPanel, and that’s rather complex.
The resulting StackPanel-surrogate code is very simple:

    /// <summary>
    /// Represent a StackPanel surrogate whose children width/height can be
    /// shared with other homogeneous panel's children
    /// </summary>
    public class StackPanel3S
        : Grid
    {
        /// <summary>
        /// Gets or sets a value that identifies the panel as a member 
        /// of a defined group that shares sizing properties.
        /// </summary>
        public string SharedSizeGroup { get; set; }


        #region DP Orientation

        /// <summary>
        /// Identifies the StackPanelEx.Orientation dependency property.
        /// </summary>
        public static readonly DependencyProperty OrientationProperty = DependencyProperty.Register(
            "Orientation",
            typeof(Orientation),
            typeof(StackPanel3S),
            new FrameworkPropertyMetadata(
                Orientation.Vertical,
                FrameworkPropertyMetadataOptions.AffectsMeasure,
                (obj, args) =>
                {
                    var ctl = (StackPanel3S)obj;
                    ctl.OrientationChanged(args);
                }));


        /// <summary>
        /// Gets or sets a value that indicates the dimension by which child elements are stacked.
        /// </summary>
        public Orientation Orientation
        {
            get { return (Orientation)GetValue(OrientationProperty); }
            set { SetValue(OrientationProperty, value); }
        }

        #endregion


        private void OrientationChanged(
            DependencyPropertyChangedEventArgs args
            )
        {
            //flush any current row/column definition
            this.RowDefinitions.Clear();
            this.ColumnDefinitions.Clear();
        }


        protected override Size MeasureOverride(Size constraint)
        {
            //retrieve the number of children
            int count = this.InternalChildren.Count;

            if (this.Orientation == System.Windows.Controls.Orientation.Vertical)
            {
                //add the missing row-defintions
                for (int i = this.RowDefinitions.Count; i < count; i++)
                {
                    this.RowDefinitions.Add(
                        new RowDefinition()
                        {
                            Height = GridLength.Auto,
                            SharedSizeGroup = this.SharedSizeGroup + "__R" + i
                        });
                }

                //remove the unnecessary row-definitions
                for (int i = this.RowDefinitions.Count - 1; i >= count; i--)
                {
                    this.RowDefinitions.RemoveAt(i);
                }

                //assing a progressive index to each child
                for (int i = 0; i < count; i++)
                {
                    UIElement child;
                    if ((child = this.InternalChildren[i]) != null)
                    {
                        Grid.SetRow(child, i);
                    }
                }
            }
            else
            {
                //add the missing column-defintions
                for (int i = this.ColumnDefinitions.Count; i < count; i++)
                {
                    this.ColumnDefinitions.Add(
                        new ColumnDefinition()
                        {
                            Width = GridLength.Auto,
                            SharedSizeGroup = this.SharedSizeGroup + "__C" + i
                        });
                }

                //remove the unnecessary column-definitions
                for (int i = this.ColumnDefinitions.Count - 1; i >= count; i--)
                {
                    this.ColumnDefinitions.RemoveAt(i);
                }

                //assing a progressive index to each child
                for (int i = 0; i < count; i++)
                {
                    UIElement child;
                    if ((child = this.InternalChildren[i]) != null)
                    {
                        Grid.SetColumn(child, i);
                    }
                }
            }

            //yield the default measuring pass
            return base.MeasureOverride(constraint);
        }

    }

Enjoy!

 
Leave a comment

Posted by on September 14, 2014 in .Net, Software

 

Tags: , , , ,

Pfelders 2014 (and bits)

Just finished our holidays in Pfelders, South-Tyrol, Italy.
Can’t think a better place where relaxing peacefully!
Enjoy some pictures…

 
Leave a comment

Posted by on August 24, 2014 in Turismo

 

Tags: , , ,

Nesting a private C# Dynamic object

I don’t use often the dynamic feature of the C# language, but past yesterday I bumped against a subtle issue.

A basic implementation.

Consider a very basic dynamic object implementation against the DynamicObject, which looks like the overhauled ExpandoObject:

    public class MyDynamicObject
        : DynamicObject
    {
        public MyDynamicObject()
        {
            this._dict = new Dictionary<string, object>();
        }


        private readonly Dictionary<string, object> _dict;


        /**
         * called when the host tries to GET the value
         * from a member
         **/
        public override bool TryGetMember(
            GetMemberBinder binder,
            out object result
            )
        {
            //look for the member into the dictionary
            bool found = this._dict.TryGetValue(
                binder.Name,
                out result
                );

            if (found)
            {
                return true;
            }

            //yield the default behavior
            return base.TryGetMember(
                binder,
                out result
                );
        }


        /**
         * called when the host tries to SET a value
         * against a member
         **/
        public override bool TrySetMember(
            SetMemberBinder binder,
            object value
            )
        {
            //store the value in the dictionary
            this._dict[binder.Name] = value;
            return true;
        }

    }

Its usage may be expressed as follows:

    class Program
    {
        static void Main(string[] args)
        {
            dynamic d = new MyDynamicObject();
            d.first = "John";
            d.last = "Doe";
            d.birthdate = new DateTime(1966, 7, 23);
            d.registered = true;

            Console.WriteLine(d.first);
            Console.WriteLine(d.last);
            Console.WriteLine(d.birthdate);
            Console.WriteLine(d.registered);

            Console.ReadKey();
        }
    }

So far, so well. But what about retrieving a member “by name”, that is using a string as a “key” for mapping the desired member?
The above snippet could be refined as follows:

    class Program
    {
        static void Main(string[] args)
        {
            dynamic d = new MyDynamicObject();
            d.first = "John";
            d.last = "Doe";
            d.birthdate = new DateTime(1966, 7, 23);
            d.registered = true;

            Console.WriteLine(d.first);
            Console.WriteLine(d.last);
            Console.WriteLine(d.birthdate);
            Console.WriteLine(d.registered);

            Console.WriteLine();
            Console.Write("Please enter a field name: ");
            string key = Console.ReadLine();

            //how to map the required field?
            //Console.WriteLine("The field value is: " + ??? );

            Console.ReadKey();
        }
    }

Again, with an ExpandoObject everything would be straightforward, but the actual “MyDynamicObject” used in the original application requires a more complex content, with XML and a dictionary working aside.

pic1

Going on this way, the “keyed” dynamic object implementation is easy to refine:

    public class MyDynamicObject
        : DynamicObject
    {

        // ... original implementation ...


        /**
         * provide a member access through a key
         **/
        public object this[string key]
        {
            get { return this._dict[key]; }
            set { this._dict[key] = value; }
        }

    }

At this point, the demo application works fine with both the accessing way. It looks much like a JavaScript object!

    class Program
    {
        static void Main(string[] args)
        {
            dynamic d = new MyDynamicObject();
            d.first = "John";
            d.last = "Doe";
            d.birthdate = new DateTime(1966, 7, 23);
            d["registered"] = true;

            Console.WriteLine(d.first);
            Console.WriteLine(d.last);
            Console.WriteLine(d.birthdate);
            Console.WriteLine(d.registered);

            Console.WriteLine();
            Console.Write("Please enter a field name: ");
            string key = Console.ReadLine();

            Console.WriteLine("The field value is: " + d[key]);
            Console.ReadKey();
        }
    }

pic2

The problem: a nested-private dynamic object.

Consider a proxy pattern, and a dynamic object to expose indirectly to the hosting application. Also consider that the dynamic object should be marked as “private” due to avoid any possible usage outside its context.
The revised component would look as follows:

    class MyClass
    {

        public IDynamicMetaObjectProvider GetDynamicAccess()
        {
            return new MyDynamicObject();
        }


        //notice that the below class is marked as "private"
        private class MyDynamicObject
            : DynamicObject
        {

            // ... implementation as the keyed-one seen above ...

        }
    }

When used in such a sample application, it won’t work:

    class Program
    {
        static void Main(string[] args)
        {
            var c = new MyClass();

            dynamic d = c.GetDynamicAccess();
            d.first = "John";
            d.last = "Doe";
            d.birthdate = new DateTime(1966, 7, 23);
            d["registered"] = true;     //throws!

            Console.WriteLine(d.first);
            Console.WriteLine(d.last);
            Console.WriteLine(d.birthdate);
            Console.WriteLine(d.registered);

            Console.WriteLine();
            Console.Write("Please enter a field name: ");
            string key = Console.ReadLine();

            //the following would also throw
            Console.WriteLine("The field value is: " + d[key]);
            Console.ReadKey();
        }
    }

Better: it won’t work the “keyed” access, but the classic way is available, however.

I wasn’t able to find *ANY* solution unless you have the ability to modify the implementation. Here are the possible solutions.

Solution 1: mark the MyDynamicObject class accessor as “public”.

This is the simplest way, but I’d say it’s also a NON-solution because the original desire is keeping the class as “private”.

Solution 2: use the reflection.

You know, reflection is able to dig into the deepest yet hidden corners of your assembly, but it’s yet a last-rescue way. The compiler has a very-little (or nothing at all) control over what we access through reflection. I’d discourage, though feasible.

Solution 3: add an interface.

The “best” solution (although I’d demote to “decent”) is adding an interface, which aim is to expose the indexed access (keyed) to the host application.

    interface IKeyedAccess
    {
        object this[string name] { get; set; }
    }


    class MyClass
    {

        public IDynamicMetaObjectProvider GetDynamicAccess()
        {
            return new MyDynamicObject();
        }


        //notice that the below class is marked as "private"
        private class MyDynamicObject
            : DynamicObject, IKeyedAccess
        {

            // ... implementation as the keyed-one seen above ...

        }
    }

Our keyed-dynamic object must implement the interface, but rather obvious because our primary goal is that.
The major difference is rather on the object usage:

    class Program
    {
        static void Main(string[] args)
        {
            var c = new MyClass();

            dynamic d = c.GetDynamicAccess();
            var dk = (IKeyedAccess)d;
            d.first = "John";
            d.last = "Doe";
            d.birthdate = new DateTime(1966, 7, 23);
            dk["registered"] = true;

            Console.WriteLine(d.first);
            Console.WriteLine(d.last);
            Console.WriteLine(d.birthdate);
            Console.WriteLine(d.registered);

            Console.WriteLine();
            Console.Write("Please enter a field name: ");
            string key = Console.ReadLine();

            Console.WriteLine("The field value is: " + dk[key]);
            Console.ReadKey();
        }
    }

Unfortunately not as good as expected, but at least it allows to keep sticky to the “private” constraint.

Here is the source code.

 
Leave a comment

Posted by on July 26, 2014 in .Net, Software

 

Tags: , , , ,

Memorabilia 2 – Apple ][

It’s been 20 years ago.

apple-invadersOn July 3, 1994 I subscribed for a small contest organized by RAI Radio Televisione Italiana. Anyone may submit his own software creation, and the prize was a TeleText module for PC.

I sent them my “Apple ][ emulator for PC" and I was awarded.

At that time, Internet still wasn't known and most TV's embed TeleText module, capable of receiving data on-the-air. Software broadcasting seemed as an unbelievable thing...then, in a few years, many of us were opening a web browser for surfing on the Internet.

 

My "real" Apple ][.

A step back to 1979.

My very first PC was a Commodore PET 2001: an unbelievable machine with a strange matrix-keyboard, a cassette-tape deck (storage) and a plain-green monitor on the top. Its engine was a 6502 CPU running at 1MHz and 8kB of RAM.

Yes, roughly an Arduino with an user-interface, but with the below exceptions:

  • an Arduino runs way faster;
  • the PET 2001 was particularly useful for the cold-winter days, due the relevant power consumption...

However, this PC was just for few months, then became too useless even for small games.

So, my "nominal" first PC was an Apple ][. In Europe it was marked “Europlus” (someone’d add “proudly built in Ireland”).

However, it came with the “usual” 6502 (actually an awesome CPU), still 1MHz, and 16kB of RAM (immediately upgraded to 48). The cassette-tape was replaced by a 5″ floppy-drive: each medium was capable of 140kB, that is probably less of this post. With a cost of 20000 Lire each (see below for a comparison), a Dysan floppy disk was the “best” on the market…at least for the humans.

I learn a lot on my Apple 2, both software and hardware.

With release of the Apple 2, the Cupertino-guys gave full-featured manuals, detailed hardware schematics, as well as ROM “BIOS” assembly dump. There was no point in the machine that wasn’t well known: hacking it was a real pleasure!

And I did it!…so many times!

Please, notice on the last picture the assembler listing signed by my myth, Steve Wozniak!

I designed several I/O hardware modules, where the most difficult part was the reproduction of the male-connection header: the PCB was the only way.

Along the huge yet worldwide success of Apple ][, they released the Apple //e, which started to fall fairly into the closeness, and so always more. That was the decay of the Apple company, and the rise of the IBM-PC, which moved in the same way as its predecessor: give away schematics and BIOS listings!
I still own my original Apple ][.

 

My "fake" Apple ][ (the emulator).

The advent of PC-XT changes almost everything but the general PC diffusion.

Whereas in the early '80 there were maybe a dozen students having a PC at home (out of about 1500 of the tech high-school I was), within as low as ten years almost everyone own a PC in their house: mostly an IBM PC-compatible.

However, the Apple ][ was still in my heart!

 

Due to university guidelines, I started to learn Pascal and Fortran. However, Fortran was awful, but (Turbo-) Pascal was awesome, instead. I loved it so much that literally was able to create anything. Whereas the standard Pascal can't reach something, just open an "asm" island, and mix high-level with assembler code.

No complex "includes", ".h" or whatever, which I always hated and *still* hate. What are used for? I mean thirty years ago, where the PC resources are very limited, but...today?

I mean, no wonders at all that behind the success of C# there's the creator of Turbo Pascal: Anders Hejlsberg.

 

So what?

Since my desktop wasn't enough to place both the old Apple ][ and the PC-AT, the most "reasonable" decision was: "just create an Apple ][ emulator running in the PC-AT!”

It was the early ’90, and I own a 386 machine (I don’t remember the actual CPU speed). However, I loved coding this mixture of “Pasc-asm” that the result was still one of my best creation ever.

Below there is a piece of assembler related to the LDA (immediate) and LDA (indirect, X):

@LDASS: mov     bx, es:[si+1]
        mov     di, bx
        and     di, $FC00
        shr     di, 9
        call    word ptr @LOCRD [di]
        sahf
        mov     cl, es:[bx]
        inc     cl
        dec     cl
        lahf
        add     si, 3
        jmp     @RET
@LDAIX: mov     bx, es:[si+1]
        add     bl, dl
        xor     bh, bh
        mov     bx, es:[bx]
        mov     di, bx
        and     di, $FC00
        shr     di, 9
        call    word ptr @LOCRD [di]
        sahf
        mov     cl, es:[bx]
        inc     cl
        dec     cl
        lahf
        add     si, 2
        jmp     @RET

 

 

Keep going on in the box!

I was able to rescue the old emulator application running even on my today’s Windows 8 64-bit machine. It seems that the old-DOS programs aren’t working in a 64-bit environment, but there’s a solution: DosBox.

DosBox, as always, is the result of a crew of heroes, who thankfully remember that there are still people asking for dinosaur’s stuffs…dino, maybe, but still valuable!

I actually had no problems installing and running my application: I was a bit worried because the total NON-abstraction on write data on video, but…it worked well!

Enjoy this piece of history!

 

 

The price of an Apple ][ computer.

Here is the complete price details of the Apple ][ products, taken from a magazine of the november 1980.

vlcsnap-2014-07-20-07h30m13s160

NOTE: "IVA" is VAT, which was 15% in 1980.

Now, according to this reference, the salary of a generic factory worker was roughly 400.000 Lire. It means that an Apple ][ had an equivalent cost as 5 times a worker salary!

 
Leave a comment

Posted by on July 20, 2014 in Software

 

Tags: , , ,

Cet MicroWPF is now on CodePlex

After loooooooong time, the Cet MicroWPF repository is publicly available on CodePlex.
The awaited release comes with a (decent) tutorial, where you may follow step-by-step how to create a nice graphical UI for your Netduino. Many more is still to do, but of sure there are enough stuffs to have some fun!

My Snapshot18

Stay tuned!

 
Leave a comment

Posted by on May 31, 2014 in .Net, Software

 

Tags: , , , , , , ,

Trieste Mini Maker Faire 2014

Trieste Mini Maker Faire 2014The wonderful location of Trieste-Miramare was chosen for the first ever Mini Maker Faire in Italy. By the way, this is the first time for me as well!
Today the weather was pretty cloudy, but there was not rain, at least during my visit. However, the uncertain sky didn’t stop many people coming from everywhere.

Miramare castle in Trieste - Italy

From Wikipedia:

Trieste was one of the oldest parts of the Habsburg Monarchy. In the 19th century, it was the most important port of one of the Great Powers of Europe. As a prosperous seaport in the Mediterranean region, Trieste became the fourth largest city of the Austro-Hungarian Empire (after Vienna, Budapest, and Prague). In the fin-de-siecle period, it emerged as an important hub for literature and music. It underwent an economic revival during the 1930s, and Trieste was an important spot in the struggle between the Eastern and Western blocs after the Second World War. Today, the city is in one of the richest regions of Italy, and has been a great centre for shipping, through its port (Port of Trieste), shipbuilding and financial services.

I was nice to see many “Makers” from abroad (Slovenia and Croatia are pretty close to Trieste), hence this “mini” faire seemed sized a little wider!
Here are some pictures!…

 
1 Comment

Posted by on May 17, 2014 in Maker

 

Tags: , ,

 
Follow

Get every new post delivered to your Inbox.

Join 89 other followers